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Project objective

• Develop a non-precious metal cathode

electrocatalyst for polymer electrolyte fuel cells

- Promotes the direct four-electron transfer with high
electrocatalytic activity (comparable to that of Pt)

- O2 reduction reaction (ORR) in acidic media (e.g, in PEFC)

- Two-electron transfer

       O2 + 2H+ + 2e  = H2O2

- Four-electron transfer

       O2 + 4H+ + 4e  = 2 H2O

- Four-electron process is desirable due to its higher

efficiency and non-corrosive product

- Chemically compatible with the acidic polymer electrolyte

- Low cost
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Budget – New FY’04 Project

• FY’04 Funding: $300 K



4

Pioneering
Science and
Technology

Office of Science
 U.S. Department

of Energy

U.S. Department of Energy, EERE
Office of Hydrogen, Fuel Cells, and Infrastructure Technologies

Technical Barriers and Targets

• This project addresses DOE’s Technical Barriers for

Fuel Cell Components

- O:  Stack Material and Manufacturing Cost

- P:  Component Durability

- Q:  Electrode Performance

• DOE’s Technical Targets:

- Low cost, <$5/kW

- Durability, >5,000 operating hours
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Approaches

• Complex oxides containing transition metals with multiple

oxidation states (e.g., spinels and perovskites)

- Oxides of metals with multiple oxidation states (e.g., Co, Ni, Fe, Mn)
contain oxygen vacancies or defects that may facilitate oxygen binding
and dissociation

- Host oxide is chosen to be stable in the acidic environment
(e.g., titanium and chromium oxide)

• Transition metal carbides and nitrides

- Contain surface vacancies and defects

- Isoelectronic with platinum (e.g., WC), catalytically active in hydro-
treating and dehydration reactions

- Resistant to acidic corrosion and electronically conducting

• Metal centers attached to an electron-conducting polymer

backbone

- Allows easy control of spacing between metal centers

- Electron conductor in close proximity to reaction site can promote high
catalyst utilization
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Safety

• Internal safety reviews have been performed for all

aspects of this project to address ESH issues

- Electrocatalyst and electrocatalyst/electrolyte ink synthesis

- All synthesis is performed in a hood to exhaust vapors of

organic solvents and to prevent dust inhalation

- Used electrocatalysts and inks are collected and disposed of

through the laboratory’s Waste Management Operations

- Electrocatalyst testing

- Purge gas is either inert Argon or Oxygen

• Safety reviews are updated and renewed annually
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Project timeline

• 1: Establish and verify test procedure

• 2: Identify one or more potential cathode electrocatalysts

• 3: Determine kinetics and stability of potential electrocatalysts

• 4: Begin first principles calculations, quantum chemical modeling to
guide selection of potential electrocatalysts

• 5: Refine choice of electrocatalysts based on modeling and 
experimental work and evaluate these catalysts

• 6: Fabricate and evaluate a membrane-electrode assembly using 
newly-developed cathode electrocatalyst

 

FY’04 FY’05
41 2 3 5 6
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A rotating ring-disk electrode apparatus is being
used to evaluate ORR kinetics

• Electrocatalyst preparation

- Mix powdered electrocatalyst with 5 wt% solution of polymer
electrolyte (Nafion®) to form an ink

- Vulcan XC72 carbon is added to ink if material is not an
electron conductor

- Ink supported on a glassy carbon rotating disk electrode
(RDE)

• Electrochemical measurements (23°C)

- RDE/thin film technique allows one to eliminate
the effects of mass transfer

- Platinum ring electrode will be used to detect intermediates
(e.g., H2O2)

- Background voltammograms in deaerated 0.5 M H2SO4 to
determine material stability

- Steady-state voltammograms in O2-saturated 0.5 M H2SO4 at
various rotation rates to determine kinetics of ORR
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The kinetics of the oxygen reduction reaction (ORR)
were determined on Pt/C to verify the RDE technique

• Electrocatalyst

- 20 wt% Pt on Vulcan XC-72 (E-TEK)

- Mixed with 5 wt% of polymer electrolyte (Nafion®) to form an ink with
Pt/C : Nafion = 60:40

- Ink supported on a glassy carbon rotating disk electrode (RDE)

• Electrochemical measurements (23°C)

- In Ar-deaerated 0.5 M H2SO4

- Used to determine the electrochemically active surface area of Pt

from hydrogen adsorption/desorption peaks in the cyclic

voltammogram

- Background voltammograms at various rotation rates

- In O2-saturated 0.5 M H2SO4

- Steady-state voltammograms of the ORR at various rotation

rates
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Levich-Koutecky equation used to extract kinetic
current from steady-state voltammograms

• Steady-state voltammograms of

the ORR on Pt/C/Nafion® on a

glassy carbon RDE

• Three methods were used to

determine the ORR kinetic

current from the RDE

experiments on Pt/C
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Tafel plots were used to extract kinetic parameters
for the ORR on Pt/C/Nafion®

• Tafel plot     ,     = E - Eeq 

• Tafel-like plot 

• A plot of E vs. lni should give a straight line with

Slope =               ,    Intercept =

io:  exchange current density, _:  transfer coefficient
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Tafel slopes for the ORR on Pt/C/Nafion® agree
well with literature values
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Kinetic currents determined using Levich-Koutecky equation

Tafel plot of ORR on Pt/C electrode 

has high and low slope regions
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Exchange current density for the ORR on
Pt/C/Nafion® agrees with literature values
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Progress on testing candidate materials
 

Oxides 

 

Milling 

Oxide to Carbon Ratio 

(wt%) 

Composite to Nafion 

Ratio (vol%) 

Co-Cr-O Wet, 16h 20:80 50:50 80:20 50:50 

Ni-Cr-O “ 20:80 50:50 80:20 62:38 

Fe(III)-Ti-O Dry, 16h 20:80 64:36 

Fe(II)-Ti-O Wet, 9h 50:50 80:20 40:60 

Fe(III)-Ti-O No milling 75:25 40:60 

Ce-W-O “ 65:35 85:15 40:60 

Ce-V-O No milling 80:20 40:60 
 

• Voltammetry of Ni-Cr-O/Carbon/Nafion

showed ORR activity, but instability in acidic

environment

• Other complex oxides showed either no

ORR activity or instability in acid

• Beginning testing of carbides and nitrides
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Future work – FY’04 and beyond
• Investigate methods for stabilizing complex transition metal

oxides

• Test the ORR activity of select transition metal carbides and
nitrides

• Begin synthesis of metal centers attached to polymer
backbones

• Incorporate higher temperature ORR kinetic measurements
when a high-temperature RDE becomes available

• Begin theoretical work (e.g., DFT calculations) to guide choice
of candidate materials

• Fabricate and test a membrane-electrode assembly using
newly-developed cathode electrocatalyst
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